The Pedigree Project  0.1
md5.c
1 /*
2  * RFC 1321 compliant MD5 implementation
3  *
4  * Based on XySSL: Copyright (C) 2006-2008 Christophe Devine
5  *
6  * Copyright (C) 2009 Paul Bakker <polarssl_maintainer at polarssl dot org>
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * * Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  * * Redistributions in binary form must reproduce the above copyright
17  * notice, this list of conditions and the following disclaimer in the
18  * documentation and/or other materials provided with the distribution.
19  * * Neither the names of PolarSSL or XySSL nor the names of its contributors
20  * may be used to endorse or promote products derived from this software
21  * without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 /*
36  * The MD5 algorithm was designed by Ron Rivest in 1991.
37  *
38  * http://www.ietf.org/rfc/rfc1321.txt
39  */
40 
41 #include "netif/ppp/ppp_opts.h"
42 #if PPP_SUPPORT && LWIP_INCLUDED_POLARSSL_MD5
43 
44 #include "netif/ppp/polarssl/md5.h"
45 
46 #include <string.h>
47 
48 /*
49  * 32-bit integer manipulation macros (little endian)
50  */
51 #ifndef GET_ULONG_LE
52 #define GET_ULONG_LE(n,b,i) \
53 { \
54  (n) = ( (unsigned long) (b)[(i) ] ) \
55  | ( (unsigned long) (b)[(i) + 1] << 8 ) \
56  | ( (unsigned long) (b)[(i) + 2] << 16 ) \
57  | ( (unsigned long) (b)[(i) + 3] << 24 ); \
58 }
59 #endif
60 
61 #ifndef PUT_ULONG_LE
62 #define PUT_ULONG_LE(n,b,i) \
63 { \
64  (b)[(i) ] = (unsigned char) ( (n) ); \
65  (b)[(i) + 1] = (unsigned char) ( (n) >> 8 ); \
66  (b)[(i) + 2] = (unsigned char) ( (n) >> 16 ); \
67  (b)[(i) + 3] = (unsigned char) ( (n) >> 24 ); \
68 }
69 #endif
70 
71 /*
72  * MD5 context setup
73  */
74 void md5_starts( md5_context *ctx )
75 {
76  ctx->total[0] = 0;
77  ctx->total[1] = 0;
78 
79  ctx->state[0] = 0x67452301;
80  ctx->state[1] = 0xEFCDAB89;
81  ctx->state[2] = 0x98BADCFE;
82  ctx->state[3] = 0x10325476;
83 }
84 
85 static void md5_process( md5_context *ctx, const unsigned char data[64] )
86 {
87  unsigned long X[16], A, B, C, D;
88 
89  GET_ULONG_LE( X[ 0], data, 0 );
90  GET_ULONG_LE( X[ 1], data, 4 );
91  GET_ULONG_LE( X[ 2], data, 8 );
92  GET_ULONG_LE( X[ 3], data, 12 );
93  GET_ULONG_LE( X[ 4], data, 16 );
94  GET_ULONG_LE( X[ 5], data, 20 );
95  GET_ULONG_LE( X[ 6], data, 24 );
96  GET_ULONG_LE( X[ 7], data, 28 );
97  GET_ULONG_LE( X[ 8], data, 32 );
98  GET_ULONG_LE( X[ 9], data, 36 );
99  GET_ULONG_LE( X[10], data, 40 );
100  GET_ULONG_LE( X[11], data, 44 );
101  GET_ULONG_LE( X[12], data, 48 );
102  GET_ULONG_LE( X[13], data, 52 );
103  GET_ULONG_LE( X[14], data, 56 );
104  GET_ULONG_LE( X[15], data, 60 );
105 
106 #define S(x,n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n)))
107 
108 #define P(a,b,c,d,k,s,t) \
109 { \
110  a += F(b,c,d) + X[k] + t; a = S(a,s) + b; \
111 }
112 
113  A = ctx->state[0];
114  B = ctx->state[1];
115  C = ctx->state[2];
116  D = ctx->state[3];
117 
118 #define F(x,y,z) (z ^ (x & (y ^ z)))
119 
120  P( A, B, C, D, 0, 7, 0xD76AA478 );
121  P( D, A, B, C, 1, 12, 0xE8C7B756 );
122  P( C, D, A, B, 2, 17, 0x242070DB );
123  P( B, C, D, A, 3, 22, 0xC1BDCEEE );
124  P( A, B, C, D, 4, 7, 0xF57C0FAF );
125  P( D, A, B, C, 5, 12, 0x4787C62A );
126  P( C, D, A, B, 6, 17, 0xA8304613 );
127  P( B, C, D, A, 7, 22, 0xFD469501 );
128  P( A, B, C, D, 8, 7, 0x698098D8 );
129  P( D, A, B, C, 9, 12, 0x8B44F7AF );
130  P( C, D, A, B, 10, 17, 0xFFFF5BB1 );
131  P( B, C, D, A, 11, 22, 0x895CD7BE );
132  P( A, B, C, D, 12, 7, 0x6B901122 );
133  P( D, A, B, C, 13, 12, 0xFD987193 );
134  P( C, D, A, B, 14, 17, 0xA679438E );
135  P( B, C, D, A, 15, 22, 0x49B40821 );
136 
137 #undef F
138 
139 #define F(x,y,z) (y ^ (z & (x ^ y)))
140 
141  P( A, B, C, D, 1, 5, 0xF61E2562 );
142  P( D, A, B, C, 6, 9, 0xC040B340 );
143  P( C, D, A, B, 11, 14, 0x265E5A51 );
144  P( B, C, D, A, 0, 20, 0xE9B6C7AA );
145  P( A, B, C, D, 5, 5, 0xD62F105D );
146  P( D, A, B, C, 10, 9, 0x02441453 );
147  P( C, D, A, B, 15, 14, 0xD8A1E681 );
148  P( B, C, D, A, 4, 20, 0xE7D3FBC8 );
149  P( A, B, C, D, 9, 5, 0x21E1CDE6 );
150  P( D, A, B, C, 14, 9, 0xC33707D6 );
151  P( C, D, A, B, 3, 14, 0xF4D50D87 );
152  P( B, C, D, A, 8, 20, 0x455A14ED );
153  P( A, B, C, D, 13, 5, 0xA9E3E905 );
154  P( D, A, B, C, 2, 9, 0xFCEFA3F8 );
155  P( C, D, A, B, 7, 14, 0x676F02D9 );
156  P( B, C, D, A, 12, 20, 0x8D2A4C8A );
157 
158 #undef F
159 
160 #define F(x,y,z) (x ^ y ^ z)
161 
162  P( A, B, C, D, 5, 4, 0xFFFA3942 );
163  P( D, A, B, C, 8, 11, 0x8771F681 );
164  P( C, D, A, B, 11, 16, 0x6D9D6122 );
165  P( B, C, D, A, 14, 23, 0xFDE5380C );
166  P( A, B, C, D, 1, 4, 0xA4BEEA44 );
167  P( D, A, B, C, 4, 11, 0x4BDECFA9 );
168  P( C, D, A, B, 7, 16, 0xF6BB4B60 );
169  P( B, C, D, A, 10, 23, 0xBEBFBC70 );
170  P( A, B, C, D, 13, 4, 0x289B7EC6 );
171  P( D, A, B, C, 0, 11, 0xEAA127FA );
172  P( C, D, A, B, 3, 16, 0xD4EF3085 );
173  P( B, C, D, A, 6, 23, 0x04881D05 );
174  P( A, B, C, D, 9, 4, 0xD9D4D039 );
175  P( D, A, B, C, 12, 11, 0xE6DB99E5 );
176  P( C, D, A, B, 15, 16, 0x1FA27CF8 );
177  P( B, C, D, A, 2, 23, 0xC4AC5665 );
178 
179 #undef F
180 
181 #define F(x,y,z) (y ^ (x | ~z))
182 
183  P( A, B, C, D, 0, 6, 0xF4292244 );
184  P( D, A, B, C, 7, 10, 0x432AFF97 );
185  P( C, D, A, B, 14, 15, 0xAB9423A7 );
186  P( B, C, D, A, 5, 21, 0xFC93A039 );
187  P( A, B, C, D, 12, 6, 0x655B59C3 );
188  P( D, A, B, C, 3, 10, 0x8F0CCC92 );
189  P( C, D, A, B, 10, 15, 0xFFEFF47D );
190  P( B, C, D, A, 1, 21, 0x85845DD1 );
191  P( A, B, C, D, 8, 6, 0x6FA87E4F );
192  P( D, A, B, C, 15, 10, 0xFE2CE6E0 );
193  P( C, D, A, B, 6, 15, 0xA3014314 );
194  P( B, C, D, A, 13, 21, 0x4E0811A1 );
195  P( A, B, C, D, 4, 6, 0xF7537E82 );
196  P( D, A, B, C, 11, 10, 0xBD3AF235 );
197  P( C, D, A, B, 2, 15, 0x2AD7D2BB );
198  P( B, C, D, A, 9, 21, 0xEB86D391 );
199 
200 #undef F
201 
202  ctx->state[0] += A;
203  ctx->state[1] += B;
204  ctx->state[2] += C;
205  ctx->state[3] += D;
206 }
207 
208 /*
209  * MD5 process buffer
210  */
211 void md5_update( md5_context *ctx, const unsigned char *input, int ilen )
212 {
213  int fill;
214  unsigned long left;
215 
216  if( ilen <= 0 )
217  return;
218 
219  left = ctx->total[0] & 0x3F;
220  fill = 64 - left;
221 
222  ctx->total[0] += ilen;
223  ctx->total[0] &= 0xFFFFFFFF;
224 
225  if( ctx->total[0] < (unsigned long) ilen )
226  ctx->total[1]++;
227 
228  if( left && ilen >= fill )
229  {
230  MEMCPY( (void *) (ctx->buffer + left),
231  input, fill );
232  md5_process( ctx, ctx->buffer );
233  input += fill;
234  ilen -= fill;
235  left = 0;
236  }
237 
238  while( ilen >= 64 )
239  {
240  md5_process( ctx, input );
241  input += 64;
242  ilen -= 64;
243  }
244 
245  if( ilen > 0 )
246  {
247  MEMCPY( (void *) (ctx->buffer + left),
248  input, ilen );
249  }
250 }
251 
252 static const unsigned char md5_padding[64] =
253 {
254  0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
255  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
256  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
257  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
258 };
259 
260 /*
261  * MD5 final digest
262  */
263 void md5_finish( md5_context *ctx, unsigned char output[16] )
264 {
265  unsigned long last, padn;
266  unsigned long high, low;
267  unsigned char msglen[8];
268 
269  high = ( ctx->total[0] >> 29 )
270  | ( ctx->total[1] << 3 );
271  low = ( ctx->total[0] << 3 );
272 
273  PUT_ULONG_LE( low, msglen, 0 );
274  PUT_ULONG_LE( high, msglen, 4 );
275 
276  last = ctx->total[0] & 0x3F;
277  padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last );
278 
279  md5_update( ctx, md5_padding, padn );
280  md5_update( ctx, msglen, 8 );
281 
282  PUT_ULONG_LE( ctx->state[0], output, 0 );
283  PUT_ULONG_LE( ctx->state[1], output, 4 );
284  PUT_ULONG_LE( ctx->state[2], output, 8 );
285  PUT_ULONG_LE( ctx->state[3], output, 12 );
286 }
287 
288 /*
289  * output = MD5( input buffer )
290  */
291 void md5( unsigned char *input, int ilen, unsigned char output[16] )
292 {
293  md5_context ctx;
294 
295  md5_starts( &ctx );
296  md5_update( &ctx, input, ilen );
297  md5_finish( &ctx, output );
298 }
299 
300 #endif /* PPP_SUPPORT && LWIP_INCLUDED_POLARSSL_MD5 */